S3.8 G6 CoolPac

> Specification sheet

Our energy working for you.™

Description

The Cummins 'S Series' engine powered CoolPac sets offer the lowest cost of maintenance thereby proving to be the most economical power solution. With the robust design and integrated technologies, the 'S Series' CoolPac can command an unrivalled reputation for reliability and performance.

The Cummins 'S Series' engine powered CoolPac sets give you the advantage of optimising your valuable space. All elements of the CoolPac sets are designed from the start to work together to maximize efficiency, even at part loads, thus offering you the advantage of lowest operating costs.

The rugged and reliable Cummins 'S Series' CoolPac sets are unique, because all the major components – the engine and cooling system are manufactured by Cummins India. This integral approach means each element of a CoolPac set is designed to work in harmony from the start.

Features

Engine : Cummins^R 'S Series ' CoolPac sets, powered by Cummins^R 'S Series ' engine, are rated at 1500 RPM and conform to ISO 8528 specifications. The engines are radiator cooled, four stroke and multi-cylinder, conforming to BS 55514/ISO 3046.

The scope of Supply includes :

- Battery Charging Alternator
- Bosch In-line fuel system with mechanical governor
- Dual spin-on fuel filter
- Lube oil filter
- Turbocharger
- Dry type Air Cleaner
- Coolant recovery bottle
- Fuel pump shut-off coil with safeties (LLOP, HWT)
- Flywheel and flywheel housing
- CE compliant guarding
- Oil drainage valve

Integrated Design - CoolPac products are supplied fitted with cooling package and medium duty air cleaner for a complete power package. Each component has been has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	s Engine Ou	utput	put Net Engine Output Typical Generator Set Outp				utput					
Standby	Prime	Base	Standby	by Prime Base		Standby	(ESP)	Prime	e (PRP)	Base (COP)		
kWm/BHP				kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA	
53.6/71.9	48.7/65.3	34.1/45.7	51.6/69.1	46.7/62.6	32.1/43	44	55	40	50	28	35	

Our energy working for you.™

www.cumminsgdrive.com

certification.

ISO 9001

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

This engine has been built to comply with CE

General Engine Data

Туре	In line, Radiator cooled
Bore mm	97
Stroke mm	128
Displacement Litre	3.8
Cylinder Block	Cast Iron, 4 Cylinder
Battery Charging Alternator	12V, 35 Amps
Starting Voltage	12V
Fuel System	Direct Injection
Fuel Filter	Spin on
Lube Oil Filter Type(s)	Spin on
Lube Oil Capacity (I)	11
Flywheel Dimensions	SAE3/10
1782	

CoolPac Performance Data

Cooling System Design	Jacket Water Cooled
Coolant Ratio	50:50
Coolant Capacity (I)	11
Limiting Ambient Temp. (degC)**	45
Fan Power (Kw)	2
Cooling System Air Flow (m ³ /s)**	0.99
Air Cleaner Type	Dry Type, Replaceable, medium duty
** @ ¼" H²0	

@ ¼" H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
1135	740	980	450

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph
Standby Po	ower			
100	53.6	71.9	14.3	3.8
Prime Powe	er			
100	48.7	65.3	12.8	3.4
75	36.5	48.9	9.5	2.5
50	24.3	32.6	6.5	1.7
25	12.2	16.4	4.0	1.1
Continuous	s Power			
100	34.1	45.7	9.1	2.4

Cummins G-Drive Engines

Asia Pacific

10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Mexico Rua Jati, 310, Cumbica

Latin America

Brazil

Guarulhos, SP 07180-900

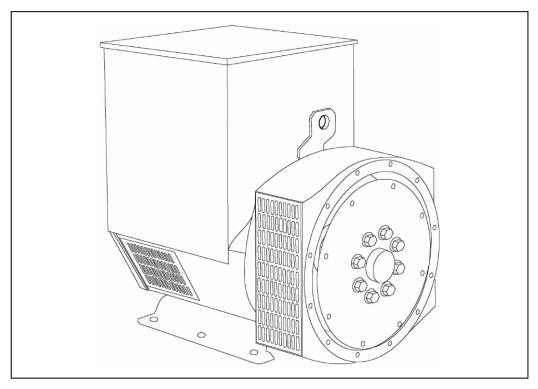
Phone 55 11 2186 4552

Fax 55 11 2186 4729

Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA


Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

Our energy working for you.™

UCI224D - Technical Data Sheet

UCI224D SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

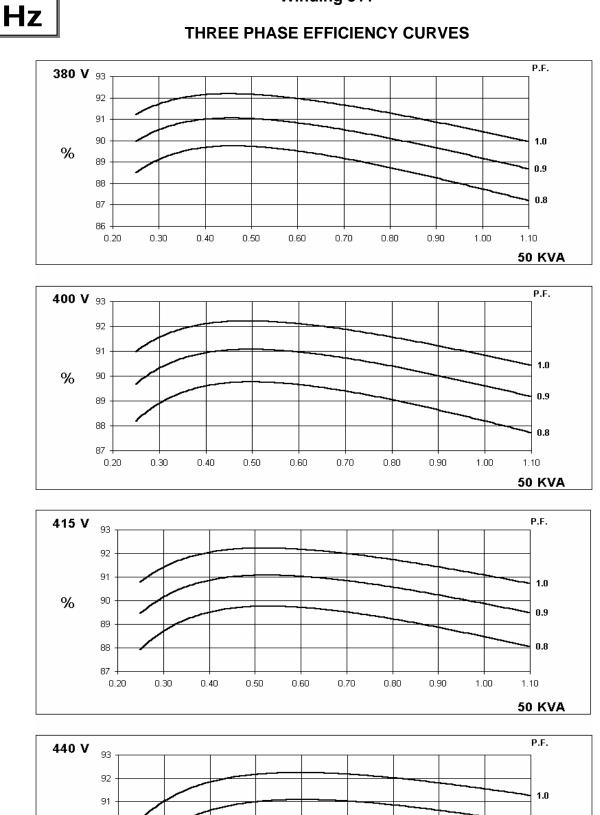
The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

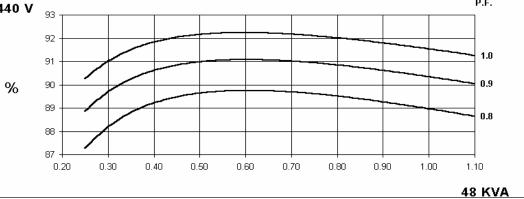
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

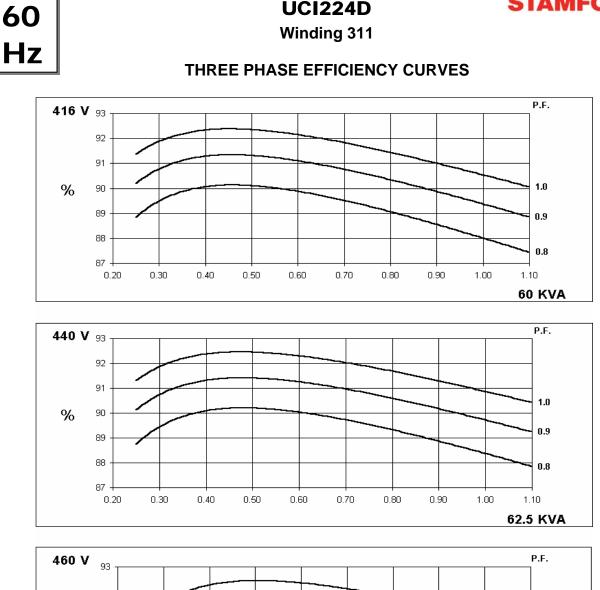
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.


NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

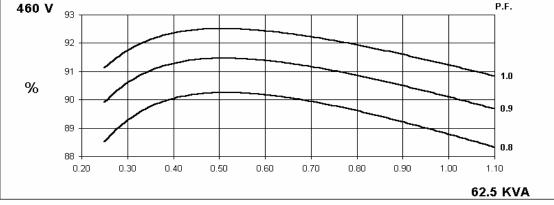
Front cover drawing typical of product range.

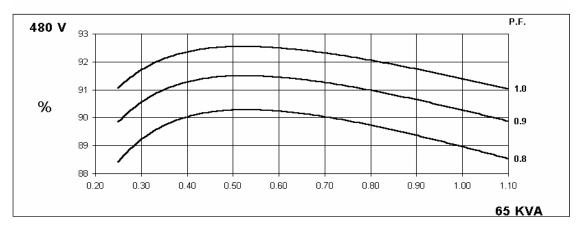
WINDING 311


_		WIN	IDING 31	1					
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.						
A.V.R.	MX321	MX341							
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING				
SUSTAINED SHORT CIRCUIT			CUIT DECRE		-				
	REFER TO		CON DECKE						
CONTROL SYSTEM	SELF EXCIT	TED							
A.V.R.	SX460	AS440							
VOLTAGE REGULATION	± 1.0 %	± 1.0 %	With 4% EN	GINE GOVE	RNING				
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCUI	IT CURRENT	-		
INSULATION SYSTEM				CLAS	SS H				
PROTECTION				IP2	23				
RATED POWER FACTOR				0.	8				
STATOR WINDING			DOI			RIC			
				TWO TI					
				12	_				
STATOR WDG. RESISTANCE		0.129 C	hms PER PH			STAR CONNE	CTED		
ROTOR WDG. RESISTANCE		0.64 Ohms at 22°C							
EXCITER STATOR RESISTANCE				21 Ohms	at 22°C				
EXCITER ROTOR RESISTANCE	0.071 Ohms PER PHASE AT 22°C								
R.F.I. SUPPRESSION	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for o							others	
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	BALANCE	D LINEAR LC	DAD < 5.0%		
MAXIMUM OVERSPEED				2250 R	ev/Min				
BEARING DRIVE END	BALL. 6312-2RS (ISO)								
BEARING NON-DRIVE END				BALL. 6309-	2RS (ISO)				
		1 BE/	ARING		· · · ·	2 BEA	RING		
WEIGHT COMP. GENERATOR	285 kg 290 kg								
WEIGHT WOUND STATOR		86	i kg			86	kg		
WEIGHT WOUND ROTOR		86.2	28 kg		77.9 kg				
WR ² INERTIA		0.421	6 kgm ²			0.4198	kgm ²		
SHIPPING WEIGHTS in a crate		30	7 kg			311	kg		
PACKING CRATE SIZE			x 96(cm)			97 x 57 >	, ,		
			Hz			60			
			<2%			TIF			
	000/000		ec 458 cfm	440/054	44.0/04.0	0.281 m ³ /se		400/077	
VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR	190/110 220/110	200/115 230/115	208/120 240/120	220/127 254/127	208/120 240/120	220/127 254/127	230/133 266/133	240/138 277/138	
kVA BASE RATING FOR REACTANCE									
VALUES	50	50	50	48	60	62.5	62.5	65	
Xd DIR. AXIS SYNCHRONOUS	2.33	2.10	1.95	1.67	3.04	2.83	2.59	2.47	
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.13	0.22	0.20	0.19	0.18	
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.15	0.14	0.13	0.12	
Xq QUAD. AXIS REACTANCE	1.07	0.97	0.90	0.77	1.40	1.30	1.19	1.14	
X"q QUAD. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.10	0.14	0.13	0.12	0.11	
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.09	0.08	0.08	0.07	
X2 NEGATIVE SEQUENCE	0.13	0.12	0.11	0.09	0.14	0.13	0.12	0.11	
X0ZERO SEQUENCE	0.08	0.08						0.07	
REACTANCES ARE SATURAT T'd TRANSIENT TIME CONST.		V	ALUES ARE	PER UNIT A 0.02		ND VOLTAG		ע	
LA TRANSLAT TIME CONST.				0.02					
T"d SUB-TRANSTIME CONST.				0.00	6 s				
T"d SUB-TRANSTIME CONST. T'do O.C. FIELD TIME CONST.				0.00					
					Ś				

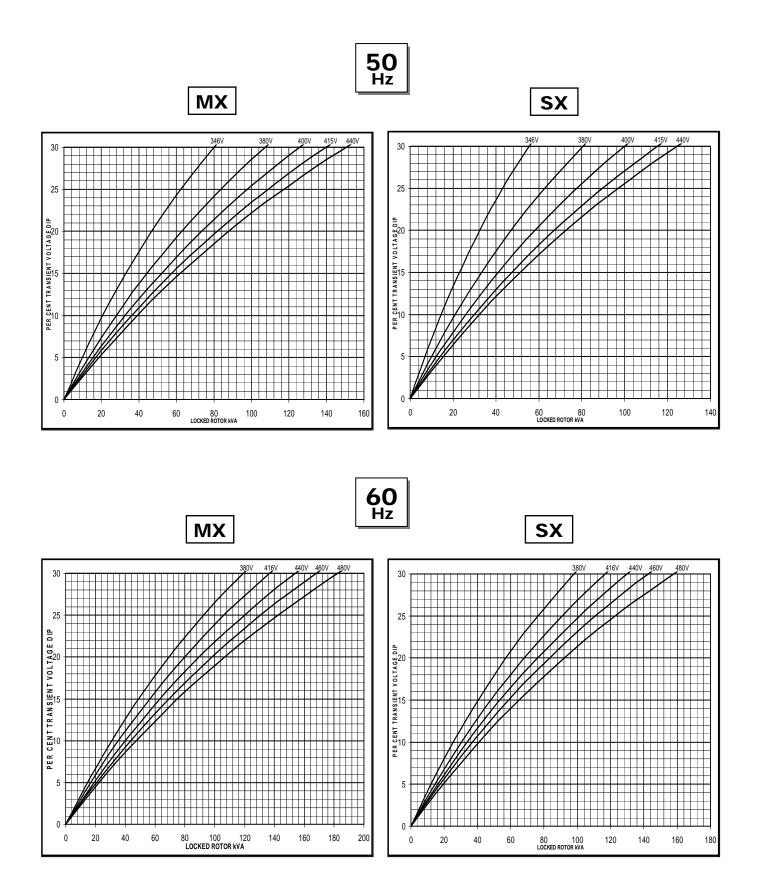


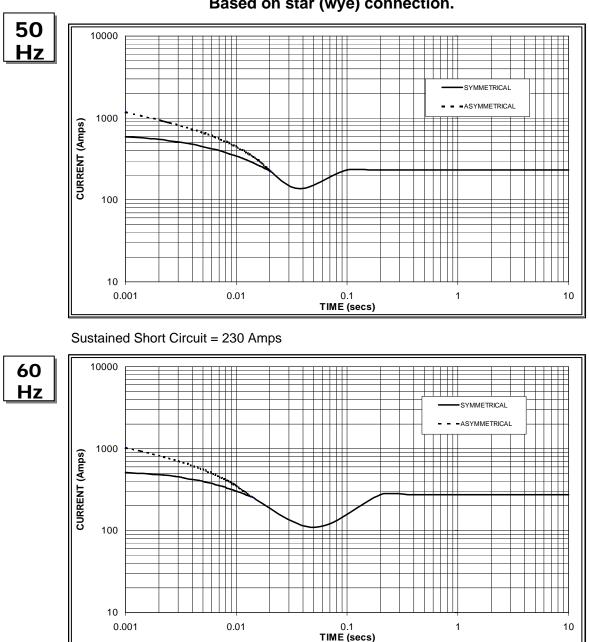
UCI224D Winding 311


50


STAMFORD

STAMFORD





5

Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 275 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.07	440v	X 1.06
415v	X 1.12	460v	X 1.12
440v	X 1.18	480v	X 1.17
The sustaine	d current val	ue is constar	t irrespective

The sustained current value is constant irrespective of voltage level

Note 2

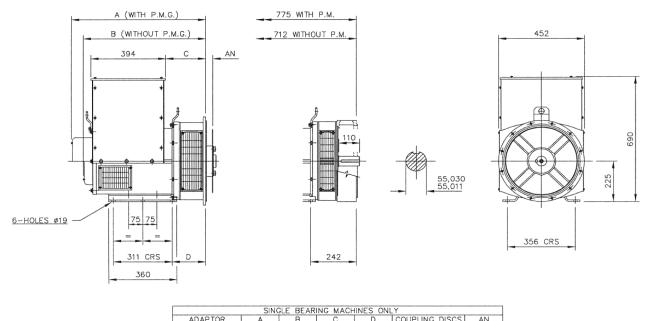
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :


Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

Winding 311 / 0.8 Power Factor

	Class - Temp Rise	C	ont. F -	105/40°	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	0°C	St	andby -	163/27	′°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	45.0	45.0	45.0	33.6	50.0	50.0	50.0	37.5	53.0	53.0	53.0	39.1	55.0	55.0	55.0	41.2
	kW	36.0	36.0	36.0	26.9	40.0	40.0	40.0	30.0	42.4	42.4	42.4	31.3	44.0	44.0	44.0	33.0
	Efficiency (%)	88.3	88.6	88.9	89.3	87.7	88.2	88.5	89.0	87.4	87.9	88.2	88.8	87.2	87.7	88.0	88.6
	kW Input	40.8	40.6	40.5	38.5	45.6	45.4	45.2	43.1	48.5	48.2	48.1	45.0	50.5	50.2	50.0	47.6
										-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Derellel Stor ()()	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
12	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	52.5	55.0	56.0	58.0	60.0	62.5	62.5	65.0	62.5	65.0	65.0	68.8	65.0	66.3	66.3	71.3
	kW	42.0	44.0	44.8	46.4	48.0	50.0	50.0	52.0	50.0	52.0	52.0	55.0	52.0	53.0	53.0	57.0
	Efficiency (%)	88.7	89.0	89.2	89.4	88.0	88.4	88.8	89.0	87.8	88.2	88.6	88.7	87.5	88.1	88.5	88.5
	kW Input	47.4	49.4	50.2	51.9	54.5	56.6	56.3	58.4	56.9	59.0	58.7	62.1	59.4	60.2	59.9	64.5

DIMENSIONS

	SINC	GLE BEAR	ING MACH	INES ONI	_Y	
ADAPTOR	A	В	С	D	COUPLING DISCS	AN
SAE 1	724,3	661,3	224,3	191,3	SAE 8	61,90
SAE 2	710	647	210	177	SAE 10	53,98
SAE 3	710	647	210	177	SAE 11,5	39,68
SAE 4	710	647	210	177	SAE 14	25,40

STAMFORD Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100